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Forward model sensitivities are commonly applied to evaluate the uncertainty in model 
parameter estimates obtained through inverse analysis. In this case, the forward sen- 
sitivity (Jacobian) matrix is applied to compute an approximate representation of the 
covariance matrix of inverse parameter estimates. However, this approach can produce 
biased estimates of the covariance matrix because it does not account accurately for 
correlations between uncertainty of calibration targets and estimates. Typically, these 
correlations are non-linear and depend on the spatial and temporal structure of inverse 
targets and estimated parameters. A better but much more computationally intensive 
method to measure parameter uncertainty, which we call the inverse-sensitivity approach, 
directly evaluates the sensitivity of inverse estimates of model parameters with respect 
to the calibration targets. Further, we can evaluate the sensitivity of model predictions 
based on inverse model parameter estimates with respect to the calibration targets. The 
proposed methodology can also be applied to problems such as estimation of predictive 
uncertainty, optimization of data collection strategies, and design of monitoring networks. 
Its implementation can be performed efficiently through parallelization. Results based on 
a simple groundwater flow inverse problem are presented to illustrate the basis for the 
method. 

1. I N T R O D U C T I O N  

Inverse models are widely used in the field of hydrogeology [2-6,10]. One of the most 
important aspects in the inverse analysis is the evaluation of uncertainty in the estimated 
parameters. The commonly-used evaluation techniques are obtained from the existing 
vast body of parameter estimation literature [1] and are generally applicable when the 
number of calibration targets (observations) are significantly larger than the number of 
model parameters. However, we frequently deal with inverse solutions of groundwater flow 
models for which the number of calibration targets is slightly larger than the number of 
model parameters. It can be argued that these problems are also ultimately ill-posed, i.e., 
there is no unique inverse solution, and therefore it is very important to accurately assess 
the uncertainty in the model-predicted estimates. Further, the relationship between the 
spatial structure (locations) of calibration targets and the spatial structure (parameter- 
ization) of estimated model parameters can cause correlations between observation and 
estimation errors that might be very important to consider. In this paper, we analyze 
analytically simple test cases and compare the sensitivities and estimation uncertainties 
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of model parameters using a traditional technique and an alternative method described 
below. 

2. M E T H O D O L O G Y  

Let us define a forward operator ~-, which is a functional that maps a given set of model 
parameters p onto a set of model-predicted observations 5" 

6 -- $C(p) (1) 

The corresponding inverse problem can be defined formally as solving (1) for ~ given a 
set of observations (calibration targets) o: 

__ .~--1 (0 )  (2)  

where j;L-'-I is an inverse operator. There are various methods for solving this inverse 
problem [6]. The covariance matrix of estimation errors of model parameters CpF are 
commonly computed using the following approximate expression [1]" 

[J Coi  ] (3) 

where J F is a sensitivity (Jacobian) matrix of forward model-predicted observations 5 
with respect to model parameters p (JF -- 06 /0p) ,  and Co is a covariance matrix of 
observation errors. The expression in (3) is obtained by applying generalization of the 
Cram~r-Rao inequality to the multivariate case [1], and, as a result, Cpr estimate is 
defining 'a lower bound' for the actual covariance matrix of estimation errors (i.e., the 
actual estimation-error variances and covariances are larger than or equal to the Cpr 
estimates). The derivation of (3)is  also based on first-order error analysis [1]. 

An alternative approach to computing the estimation errors that is theoretically more 
accurate can be derived by considering the inverse model (2) as a "forward" model map- 
ping o onto ~. In this case, we can formally estimate the parameter uncertainties approx- 
imated up to the first order by using the definition of a covariance matrix [1]" 

Cpi = E [ [ ~ ( o ) -  E [~(o)]] [ ~ ( o ) -  z [~(o)]1 ~] 

= z [[~(o) - ~(6)] [~(o) - ~(8)] ~] 

= ~ l iP(O) -~- J I  [O -- O] -- p (o ) ]  [p(o)  -~- J i  [o - o] - p (o ) ]  T] 

- z [[J, [o - <] [J, [o - 0]] ~] 
= J , z  [ [ o -  ~1 [ o -  ~]~] JT 

- J i C o J ~  (4) 

where ~(o) is the set of inverse-model-predicted parameters given a set of observations 
(calibration targets) o, 5 is the "expected value" for the observations o (i.e., the actually 
observed values), J1 is the sensitivity matrix of the inverse model representing the partial 
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derivatives of parameter estimates ~ with respect to calibration targets o (Ji  = c9~/c9o). 
In (4), we make an assumption that the inverse-model-predicted estimates given 5, ~(5), 
represent the "expected value" of ~(o) (i.e., ~(5) - E [~(o)]). 

Note the difference in the way JF and J I are computed: the forward-sensitivity matrix 
J r  represents how the changes in model parameters impact observations predicted by the 
forward model; the inverse-sensitivity matrix J I represents how the changes in calibration 
targets impact model parameters predicted by the inverse model. If the partial derivatives 
in J~ cannot be computed analytically, the numerical computation of J I might require 
solving of multiple inverse problems for different sets of calibration targets. 

We will define the two methods of computing the covariance matrix of estimation errors 
outlined in (3) and (4) as forward- and inverse-sensitivity approaches, respectively. The 
expressions obtained through both approaches are approximate since they are based on 
first-order analyses. However, there are important differences. In (3), the first-order 
approximation is applied to represent the dependency of model-predicted observations 
on model parameters (Jr) .  In (4), the first-order approximation is applied to represent 
the dependency of inverse-model-predicted parameters on calibration targets (JI). How 
appropriate these approximations for both approaches are depends on the mathematical 
properties of the respective forward and inverse problems (1 and 2). However, since 
we are interested in the effect of observation errors on the parameter-estimation errors, 
the inverse-sensitivity approach is mathematically more suitable for this purpose. Even 
if the two first-order approximations are appropriate (linear models) or produce similar 
impacts on the respective covariance matrix estimates, the inverse-sensitivity approach 
can be expected to be superior to the forward-sensitivity approach because the CpF values 
might be theoretically smaller than the actual error variances, as discussed above. 

The differences between the two covariance matrices of estimation errors (3 and 4) will 
be further analyzed below for a simple groundwater flow system. We will also discuss 
the differences between the forward- and inverse-model sensitivity matrices and their 
implications. 

3. S I M P L E  1D E X A M P L E  

Let us consider a simple one-dimensional groundwater flow system (Figure 1). There 
are two zones with permeabilities kl and k2 [L/T]. The constant velocity of groundwater 
flow passing through the system is qf [L/T], and the heads (pressures) are observed at 
four locations along the flow direction, hi, hi, h2 and h3 [L]; the observations are evenly 
distributed with separation distance 1 [L]. To solve the forward problem (1), we can use 

values of k~, k2, hf, and qf, and Darcy's law to compute estimates for hi, h2, and h3" 

qfl 
hi - h f +  

kl 

qsl qsl (s) 
k-~ 

qfl 2qfl 
k---~- tel 
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Figure 1. Schematic representation of a simple one-dimensional groundwater flow system. 

A A 
Alternatively, we can solve the inverse problem (2) and estimate kl and k2 based on 

our knowledge about qf, hi, hi, h2, and ha" 

k~l _ q f l 
hi  - h f  

k5 - qsl[  1 
2 h2 -- hl  

+ 
ha - h2 

(6) 

The values for qf and hf are assumed to be perfectly known, but hi, h2, and ha are 
considered uncertain with variances of observation errors equal to Cr~l , ~2,  and ~3,  re- 
spectively; further, the observation errors are considered uncorrelated, causing the matrix 
Co to have a diagonal form. Based on the forward model equations (6), we compute the 
seAnsitivity matrix, JF, representing the partial derivatives of model-predicted observations 
(hi, h2 and ha) with respect to model parameters (kl and ks) as follows" 

_ 1  0 

(7) 

-~1 - g  

The covariance matrix of estimation errors is then defined using (3)" 

C p F -  [ JTCo l JF ]  -1 
I O"21(40"~2-+-O'~3) k 4 __ Cr~l(20"g2nt-O'~3) /,.2/,,.2 ] 

1 (O'~1 +4~2+cr~3) (O"21+4Cr~2 +~3)'~1 '~2 
_ ~2 or2 +~2 4cr2 +or2 J q~l 2 O'~1 (2Cr~2nt-O'~3) k 2 k  2 h2 h3 hl ( h2 h3 ) /~4 ( 8 )  

(~11+4~:+~) (~1+4~I:+~) '~2 

Alternatively, for the inverse sensitivity approach, we compute the sensitivity matrix, 
A A 

JI, of model parameters estimates (kl and k2) with respect to calibration targets (hi, h2, 
and h3) based on (6)" 

I 
_ 1 )~ 0 0 

J~ - qsl (h~-h~ (9) 
1 ) 2  1 (  1 )2 l_______k___) - 1 ) 2  

2(h2-h1 2 (h3-h2 (h2-hl )2 2(h3-h2 
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and compute an expression for the covariance matrix of estimation errors using (4)" 

Cpi - -  J / C o J ~  

O-2 O-2 
2 (h2-h l  hl )2 

hi '~ 4 
q~l 2 (h l -h f  ] )2 (h3-h2 

__ hl 1 ~ 0.22 1 1 G23 
2(h2-h1)2(h3-h2  4 (h2 -h l  (h3-h2)  2 ~ (h2-h1)2 ~ (h3_h2)4 

The forward-model sensitivity matrix suggests that all the model-predicted observations 
(hi, h2, and h3) depend on the model parameter ~1 (~i matrix column 1). However, based 
on the inverse-model sensitivity matrix, we conclude that onlAy the observation hi impacts 
the inverse estimate kl. The model-predicted observation hi does not depend on k2 (7; 
matrix element [1,2]), whereas the inverse estimate of k2 depends on the calibration target 
hi (9; matrix element [2,1]). These comparisons demonstrate that if we want to estimate 
the importance of calibration targets in the parameter estimation, the analysis should be 
based on a inverse-model sensitivity matrix, not on a forward-model sensitivity matrix. 

The disparity between the sensitivity matrices causes significant differences in the re- 
spective correlation matrices of estimation errors (8 and 10). The variance of estimation 

errors associated with kl based on forward-model sensitivities (8; matrix element [1,1]) 
depends on the errors of all the observations, even though observations h2 and h3 have no 
impact on the kl estimate (6). The variance of estimation errors associated with kl based 
on inverse-model sensitivities (10; matrix element [1,1]) depends only on the observation 
error of hi (crY1). The covariance (off-diagonal) terms in both matrices demonstrate the 
same discrepancy: the covariance of estimation errors between the two parameters should 
depend only on the observation error cry1 (10) and not on all the observation errors (8). 

Finally, the variance of estimation errors associated with k2 has different expressions in 
the matrices (8 and 10; matrix elements [2,2]), but both of them are functions of all 
three observation errors, as expected. These comparisons demonstrate that the inverse- 
sensitivity approach is superior to the forward-sensitivity approach in estimating errors 
in inverse-model parameters. 

It is important to note that the estimation uncertainty of kl derived from the inverse- 
sensitivity approach does not depend on the number of observations to the left of hi 
(Figure 1), nor on their respective observation errors; however, this is not the case with 
the forward-sensitivity approach. In addition, the estimation uncertainty in the inverse- 
sensitivity approach depends on the way we compute the model parameters. In the ex- 
pression for k2, should we average the gradients between the three observations differently 
than in (6), for example 

qsl [ 2 1 
- - 2  h3 hi + h 3 - h 2  

(11) 

A 

The k2 estimation uncertainty would be different as well. This demonstrates that the 

inverse-sensitivity approach allows us to take into account how the mathematical formu- 

lation of the inverse problem impacts the propagation of uncertainties from the observation 

space onto parameter space. Differences among alternative mathematical formulations of 



1248 

Table 1 
Estimation errors of model parameters using forward- and inverse-sensitivity approaches. 

Case 

number 

Observation errors 

cr~ [rn 2] cry2 [m 2] cry3 [rn 2] 

0.1 0.1 0.1 

0.1 1. 0.1 

0.1 0.1 1. 

0.1 1. 1. 

1. 0.1 0.1 

1. 1. 1. 

Estimation errors 

(forward) 

O-k1 

Estimation errors 

(inverse) 

Okl 

0.083 0.05 

0.098 0.05 

0.093 0.14 

0.098 0.235 

0.333 0.14 

0.833 0.5 

0.1 0.05 

0.1 0.05 

0.1 0.275 

0.1 0.275 

1. 0.275 

1. 0.5 

the inverse problem represent one type of conceptual model uncertainty that might be im- 
portant to consider in our error analysis. Apparently, this conceptual model uncertainty 
cannot be the assessed by the forward-sensitivity approach. 

We should also remark that if the number of observations is equal to the number of 
parameters and if the spatial distribution of observations and parameters is such that 
each parameter is directly associated with a single observation, both approaches produce 
mathematically equivalent expressions for the covariance matrices of estimation errors 
(CpF - Cpi). For our simple case in Figure 1, these conditions will be satisfied if the 
permeability zones k~ are encompassing the spaces between consecutive observation loca- 
tions hi (where i - 1 , . . . ,  N and N is the number of observations/parameters); e.g., if 
observation ha is ignored or if one extra parameter ka for permeability of the zone between 
ha and h2 is added. 

To further demonstrate the differences between the two approaches, we evaluate the 
estimation errors for a series of examples. We set 1 - 1 m ,  q f  - 1 m / d ,  h f  - 0 m ,  

hi - 1 m, h2 - 2 m, ha - 3 m. The estimates of model parameters based on (6) are 

k l  - k2 - 1 m / d .  In Table 1, we display the variances of estimation errors calculated 
for different variances of observation errors. Overall, the forward-sensitivity estimates 
are smaller than the inverse-sensitivity estimates. The highest discrepancy (on order 
of 50%) is for Case 5. For the rest of the cases, both approaches produce equal or close 

A 

2 values for the k2 estimation uncertainty (crk2); however, the variance of kll estimation error 
(cry1) is systematically underpredicted by the forward-sensitivity approach. The numerical 

,, ,, 2 estimate on h2 and h3 results also demonstrate the dependence of forward-sensitivity crk~ 
observation errors (Table 1; e.g., Cases 1-5). Note that the "inverse-sensitivity" estimate 
of sk22 does not depend on s~2 (Table 1", e.g., Cases 1 and 2, Cases 3 and 4) even though 
it should (10); due to selected values of calibration targets we get ha - h2 - h2 - h i ,  and 

2 the middle term of matrix element [2 2] in (10) containing cry2 gets canceled. That is, Crkl 
2 becomes crk2 , o-~1 becomes cry2 , and Cr~l becomes cry2. 
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4. D I S C U S S I O N  A N D  C O N C L U S I O N S  

The assessment of estimation uncertainty using the inverse-sensitivity approach is gen- 
erally superior to the commonly-applied forward-sensitivity approach. However, the pro- 
posed methodology requires the evaluation of inverse-model sensitivity matrix represent- 
ing the dependency of inverse-model-predicted parameters on calibration targets. For 
the simple case presented in this paper, the evaluation can be done analytically. For 
much more complicated numerical models, the derivation might only be performed nu- 
merically (e.g., using a finite-difference approach), which can be a very computationally 
intensive task. Nonetheless, the matrix evaluation can be performed efficiently through 
parallelization; we have been successful in the numerical derivation of inverse-model sen- 
sitivity matrix elements for relatively large and complex inverse models [9]. Another 
way to substantially decrease the computational burden is to use approximate (reduced) 
representations of the forward model in the inverse process [7,8]. 

Special care should be taken when applying the forward-model sensitivity analysis of 
estimation errors for inverse models, especially when (a) the number of calibration targets 
and the number of model parameters are in the same order, or (b) the spatial structures 
of calibration targets and model parameters prompt dependency between observation and 
estimation errors. 

The differences between the forward- and inverse-model sensitivity matrices derived for 
the simple test case demonstrate that the forward sensitivity analysis for evaluation of the 
importance of calibration targets and/or quality of inverse estimates might not always be 
accurate. For example, high forward-model sensitivity of model-predicted observations 
to the model parameters does not necessarily imply high importance of the respective 
targets in the calibration process. Also, model parameters that cause substantial changes 
in the model-predicted observations might not be estimated with high accuracy by the 
inverse model. 

In contrast, inverse-sensitivity analyses address these potential deficiencies, and there- 
fore may be useful for problems such as estimation of predictive uncertainty, optimization 
of data collection strategies, and design of monitoring networks. 
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